13.3 boosting (uva - machine learning 1 - 2020)
Published 4 years ago • 991 plays • Length 32:52Download video MP4
Download video MP3
Similar videos
-
26:18
1.2 what is machine learning (uva - machine learning 1 - 2020)
-
14:47
8.3 neural networks: losses (uva - machine learning 1 - 2020)
-
17:42
1.3 types of machine learning (uva - machine learning 1 - 2020)
-
27:36
9.2 k-means clustering (uva - machine learning 1 - 2020)
-
13:04
12.3 gaussian processes (uva - machine learning 1 - 2020)
-
12:47
9.1 unsupervised learning: latent variable models (uva - machine learning 1 - 2020)
-
17:58
10.2 principal component analysis: minimal reconstruction error (uva - machine learning 1 - 2020)
-
25:45
10.3 probabilistic principal component analysis (uva - machine learning 1 - 2020)
-
26:34
3.1 linear regression with basis functions (uva - machine learning 1 - 2020)
-
39:51
9.4 gaussian mixture models and expectation maximization (uva - machine learning 1 - 2020)
-
18:20
8.4 neural networks: stochastic gradient descent (uva - machine learning 1 - 2020)
-
13:07
5.4 classification with decision regions (uva - machine learning 1 - 2020)
-
10:20
7.1 classification with basis functions (uva - machine learning 1 - 2020)
-
21:49
10.4 non-linear principal component analysis (uva - machine learning 1 - 2020)
-
25:19
5.5 decision theory (uva - machine learning 1 - 2020)
-
34:39
10.1 principal component analysis: maximum variance (uva - machine learning 1 - 2020)
-
22:44
8.2 neural networks: universal approximation theorem (uva - machine learning 1 - 2020)
-
19:04
7.3 logistic regression: stochastic gradient descent (uva - machine learning 1 - 2020)
-
16:46
4.3 gaussian posteriors (uva - machine learning 1 - 2020)
-
14:47
2.2 gaussian (uva - machine learning 1 - 2020)
-
10:41
5.3 model evidence approximation and empirical bayes (uva - machine learning 1 - 2020)