asplos'23 - session 3b - occamy: elastically sharing a simd co-processor across multiple cpu cores
Published 1 year ago • 139 plays • Length 11:16Download video MP4
Download video MP3
Similar videos
-
11:25
asplos'23 - session 1a - heron: automatically constrained high-performance library generation for de
-
11:59
asplos'23 - session 3b - huffduff: stealing pruned dnns from sparse accelerators
-
13:00
asplos'23 - session 6a - qompress: efficient compilation for ququarts exploiting partial and mixed r
-
11:23
asplos'23 - session 5b - re-architecting i/o caches for emerging fast storage devices
-
12:08
asplos'23 - session 3c - efficient compactions between storage tiers with prismdb
-
11:15
asplos'23 - session 7c - a prediction system service
-
13:07
asplos'23 - session 6b - cooperative concurrency control for write-intensive key-value workloads
-
1:04:45
system design: concurrency control in distributed system | optimistic & pessimistic concurrency lock
-
14:15
asplos'23 - session 8c - khuzdul: efficient and scalable distributed graph pattern mining engine
-
17:35
avx512 (1 of 3): introduction and overview
-
11:46
asplos'23 - session 5c - homunculus: auto-generating efficient data-plane ml pipelines for datacente
-
16:44
asplos'22 - session 3b - crisp: critical slice prefetching
-
13:06
asplos'23 - session 9b - ubft: microsecond-scale bft using disaggregated memory
-
12:41
asplos'23 - session 3a - junkyard computing: repurposing discarded smartphones to minimize carbon
-
11:34
asplos'23 - session 2c - aquatope: qos-and-uncertainty-aware resource management for multi-stage ser
-
4:14
2in1 pos inventory system | chapter 3 basic function: touchpos series
-
16:02
asplos'23 - session 8c - achieving sub-second pairwise query over evolving graphs
-
12:25
asplos'23 - session 1b - risotto: a dynamic binary translator for weak memory model architectures
-
14:40
asplos'23 - session 2a - graphene: an ir for optimized tensor computations on gpus
-
12:57
asplos'23 - session 4c - sparsetir: composable abstractions for sparse compilation in deep learning