autonomy talks - matei ciocarlie: mechanisms, sensors & policies for dexterous robotic manipulation
Published 1 year ago • 451 plays • Length 1:01:00Download video MP4
Download video MP3
Similar videos
-
1:09:08
autonomy talks - ani majumdar: safety&generalization guarantees for learning-based control of robots
-
54:00
autonomy talks - giuseppe loianno: learning robot super autonomy
-
1:09:23
ri seminar: matei ciocarlie : versatility in robotic manipulation: the long road to everywhere
-
58:39
2024 winter robotics colloquium: matei ciocarlie (columbia university)
-
1:06:10
autonomy talks - stephen smith: learning motion plans and user preferences for robot autonomy
-
53:40
autonomy talks - franziska mathis-ullrich: cognition-guided robotics and embedded ai for surgeons
-
1:01:52
irim seminar series: "autonomous and human-collaborative robotic manipulation"
-
12:29
humans, robots, and non-prehensile manipulation
-
1:30:00
lecture 1: mit 6.4210/6.4212 robotic manipulation (fall 2022) | "anatomy of a manipulation system"
-
2:29
assembler robots could eventually build almost anything
-
56:25
stanford webinar - autonomous robotic manipulation: what’s within reach? jeannette bohg
-
1:01:30
autonomy talks - michael posa: multi-contact learning and real-time control
-
1:07:55
autonomy talks - nikolai matni: what makes learning to control easy or hard?
-
1:00:12
autonomy talks - oya celiktutan: robot learning from and for human interactions
-
56:13
autonomy talks - maani ghaffari: computational symmetry and learning for robotics
-
1:05:46
autonomy talks - georgia chalvatzaki: shaping robotic assistance through structured robot learning
-
47:00
mit 6.s191 (2020): generalizable autonomy for robot manipulation
-
1:09:59
autonomy talks - robert katzschmann: rethink how we make robots to explore the world
-
56:05
autonomy talks - mark müller: tightly integrated design and control of aerial robots
-
49:28
autonomy talks - jamie paik: reconfigurable robots for real intuitive interactions
-
1:04:14
autonomy talks - nils napp: abstraction barriers for physically embodied algorithms