juliacon 2020 | geometricflux.jl: geometric deep learning on flux | yueh-hua tu
Published 4 years ago • 2.5K plays • Length 20:59Download video MP4
Download video MP3
Similar videos
-
38:52
geometricflux.jl: geometric deep learning in flux by yueh-hua tu | coscup 2020
-
25:18
juliacon 2020 | on the state of flux | dhairya gandhi
-
7:42
juliacon 2020 | convolutional conditional neural processes in flux | wessel bruinsma
-
25:49
scaling up training of any flux.jl model made easy | dhairya gandhi | juliacon 2022
-
22:02
juliacon 2020 | networkdynamics.jl - modeling dynamical systems on networks | michael lindner
-
9:04
generating automatically labelled ml datasets with lattice.jl | don march | juliacon 2020
-
8:33
lux.jl: explicit parameterization of neural networks in julia | avik pal | juliacon 2022
-
5:28
chris lattner on julia programming language | lex fridman podcast clips
-
10:24
all that's new and improved in optimization.jl | dixit | juliacon 2024
-
50:03
state of julia | valentin churavy, jameson nash, tim holy | juliacon 2023
-
15:53
juliacon 2020 | julia for pdes - physics informed neural networks for automated pde.. | kirill zubov
-
1:35
why flux? the elegant julia machine learning library
-
25:12
juliacon 2020 | dynamicppl: stan-like speed for dynamic probabilistic models | mohamed tarek
-
7:00
explainableai.jl: interpreting neural networks in julia | adrian hill | juliacon 2022
-
10:07
lotterytickets.jl: sparsify your flux models | marco cognetta | juliacon 2023
-
4:16
building deep learning models in flux.jl (4 minute tour)
-
19:28
juliacon 2020 | dynamicgrids.jl: high-performance spatial simulations in julia | rafael schouten
-
8:19
juliacon 2020 | handling large geospatial raster data with the earth system data | felix cremer
-
8:24
kernelfunctions.jl: machine learning kernels for julia | théo galy-fajou | juliacon 2020
-
18:55
juliacon 2020 | auto-optimization and parallelism in differentialequations.jl | chris rackauckas
-
28:56
juliacon 2020 | statsmodels.jl: mistakes were made/a `@formula` for success | dave kleinschmidt
-
29:55
invertiblenetworks.jl - memory efficient deep learning ... | philip a. witte et al | juliacon2021