predictive uncertainty quantification in machine learning | patrick altmeyer | juliacon 2023
Published 1 year ago • 689 plays • Length 28:49Download video MP4
Download video MP3
Similar videos
-
28:03
juliaeo 2023: outcomes, overview & impact | forget, szczesniak, pinelo | juliacon 2023
-
7:38
automating the composition of ml interatomic potentials in julia | emmanuel lujan | juliacon 2023
-
30:19
what's new in trustworthy ai in julia (taija)? | altmeyer | juliacon 2024
-
9:21
machine learning phase transitions: a probabilistic framework | julian arnold | juliacon 2023
-
5:28
chris lattner on julia programming language | lex fridman podcast clips
-
20:55
maxwell's equations explained logically! (ep: 1 - power of gauss's law)
-
58:03
keynote: why i use julia for quantum computing | hyatt | juliacon 2024
-
9:30
constraintlearning: ever wanted to learn about constraints? | jean-françois baffier | juliacon 2023
-
43:15
keynote: scientific machine learning through symbolic numerics | chris rackauckas | juliacon 2023
-
22:59
introducing a financial simulation ecosystem in julia | aaron wheeler | juliacon 2023
-
8:36
quantum monte carlo in julia | rafał pracht | juliacon 2023
-
11:08
accelerating economic research with julia | multiple authors | juliacon 2023
-
6:43
uncertainty quantification (1): enter conformal predictors
-
10:01
julia: the unique solution to an optimisation problem | oskar laverny | juliacon 2023
-
30:03
an update on the itensor ecosystem | matthew fishman | juliacon 2023
-
24:54
control-systems analysis and design with juliacontrol | fredrik bagge carlson | juliacon 2022
-
26:16
neuroblox.jl: biomimetic modeling of neural control circuits | helmut strey | juliacon 2023